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Gravity wave refraction by islands 

By CONRAD C .  LAUTENBACHER 
Harvard University, Cambridge, Massachusetts 

(Received 23 January 1969 and in revised form 27 August 1969) 

The refractive influence on tsunami run-up of the offshore bottom topography 
of islands is analyzed. Shallow water theory is used to treat problems in which 
the geometry resembles that of individual Hawaiian islands and in which the 
incident wave is plane and monochromatic. 

Mathematically, the differential equation for long-wave propagation is con- 
verted into an integral equation to which numerical methods are applied. Results 
of practical importance include the run-up on island coastal areas. The results 
are used in conjunction with earlier one-dimensional analyses to estimate the 
total tsunami run-up. 

1. Introduction 
Tsunamis (or seismic sea waves) are long wave trains on the surface of the 

oceans generated by earthquakes, volcanoes, fault movements, or other general 
dislocations occurring on land surfaces contiguous with or contained within the 
oceans. The majority of the energy carried by a seismic sea wave is concentrated 
in the section of ocean wavelength spectrum between thirty and four-hundred 
miles. Wave amplitudes on the open ocean are of the order of one foot, while 
coastal amplitudes may be as high as 30 or 40 ft. 

A reasonably general theory of one-dimensional tsunami run-up is given in 
a paper by Carrier (1966). There, the run-up of a tsunami initiated by a distant 
ocean bottom disturbance, propagated over an irregular bottom, and amplified 
by a sloping beach is analyzed. The maximum wave run-ups calculated are 
smaller than those on islands, and one could conjecture that the discrepancy is 
due to absence, in the theory, of the effect of refractive focusing. The following 
study supports this hypothesis. 

2. Formulation of the problem 
Long wavelengths and small amplitudes imply that linear long wave theory is 

appropriate. Nonlinear effects are present in a small region adjacent to a coast 
and will be discussed further in 0 5. 

In  such a theory, 
1 

g 
(If&)* + (h”y;), - - yLt = 0, 

where g is acceleration of gravity, h” is water depth, y‘ is wave height (above 
undisturbed water level), Z, 5 are horizontal Cartesian co-ordinates and t is time 
(letter subscripts indicate differentiation). 
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Solutions for (1) will be determined in regions whose topographies are idealiza- 
tions of island topographies, e.g. the frustums of circular and elliptical cones. 
Figure 1 depicts island geometry and lists data for the circular islands and wave- 
lengths investigated. The results depend on two non-dimensional parameters, 
L/R (see figure I) ,  and h/L, the ratio of wavelength to island base diameter. The 
relation between the wavelength and the period of the incident wave also depends 
on the water depth at the island base. Solutions obtained thus apply to all islands 
with non-dimensional parameters identical to the cases investigated. 

- -3L -3R 2 

FIGURE 1. Islands investigated. T = (E2+E2)*;  ho = dimensional water depth in F > 6L. 
nm, nautical mile; A, wavelength; T, period. 

LIR Model L(nm) ho(fm) AIL  T (mill) 

4.65 Small 50 3000 0.785, 3.35, 7.85 5, 22, 50 
14, 28, 57 4.00 Oahu 100 2500 1, 2, 4 

1.67 Hawaii 125 3000 1, 2, 4 17, 34, 69 

It is of particular interest to infer tsunami run-up on island shores. In pursuit 
of this goal, the solution for a particular frequency w will be obtained for incident 
waves of the form, 

7; = 7, exp {i(k’E - ot)} . 

The following non-dimensional variables are used for ease in calculation and 
interpretation: 

k’ = - , 7, is the incident wave amplitude, and h, is indicated in figure 1. (;id* 
In terms of the new variables, the long-wave equation becomes 

(h’v& + (h’?J2+ k27 = 0. (2) 
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The following comments anticipate the use of numerical methods. The dif- 
ferential long-wave equation is elliptic in nature over an infinite region. Thus, 
the direct calculation of a numerical solution is extremely inconvenient. As is 
well-known, a solution to the differential equation exists and is unique in a region, 
provided that suitable conditions are prescribed on every section of the boundary 
of the region. In a closed domain with known boundary conditions, an elliptic 
equation is solved numerically by replacing the differential operators with finite 
difference operators. The result is a set of algebraic equations for the function 
values at  discrete points of the region. Solution accuracy is checked by increasing 
the number of points in the region and comparing results. 

The problem of wave scattering by an island involves an open region. Obviously, 
a finite difference solution of the differential equation requires termination of 
the open region at  some finite value. To be assured of a correct numerical solution, 
the wave form must be known at the assumed outer boundary. The only restric- 
tion is that the solution obey the radiation condition, i.e. scattered wave energy 
must propagate away from the island. In a constant depth region, the solution 
may be expressed as an infinite Fourier-Bessel series with indeterminate co- 
efficients. Choosing Hankel functions for outgoing waves satisfies the radiation 
condition. However, the precise form of the wave at any radius cannot be known, 
a priori. 

As a first approximation, the Hankel functions in the expansion of the far 
field may be replaced by their asymptotic forms. Such an approach was used by 
Vastano & Reid (1967) to investigate numerical long-wave solutions in the 
neighbourhood of a circular cylinder on a constant-depth bottom, and in the 
region of a paraboloid bounded by a shore line wall at  a depth 10 yo of the island 
base depth. Results for each set of parameters must be checked carefully to 
validate the choice of outer boundary position and the use of the asymptotic 
form of the radiation condition. 

Vastano & Reid (1966) extended their computations to include conical islands 
together with a model retaining some of the real topographical features of Wake 
Island, all with a coast line wall. None of the cases solved by Vastano & Reid 
were sufficiently similar to those investigated in this paper to allow a direct 
quantitative comparison, but solution curves of similar character from both 
papers are pictured in figure 2 for reference. 

In the method of Vastano & Reid, the only possible coastal boundary condition 
is that of no-flow. Any island investigated is automatically surrounded by a wall. 
The treatment developed below has no such limitation but includes the proper 
boundary condition on a sloping beach with no wall. An interesting observation 
is that the method of this paper could not cover a no-flow condition at the coast, 
while the method of Vastano & Reid includes no-flow at the coast as the only 
possible condition. 

For long (non-breaking) waves of small amplitude, no viscous energy dissipa- 
tion of significant proportions occurs on a sloping beach. This condition may be 
approximated in the solution of (non-viscous) long-wave theory by enforcing no 
energy absorption at the coast. The one-dimensional, linear, bounded solution 
on a beach of constant slope (see $ 4 )  allows no energy absorption or creation. 

42 F L M  41 
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The only tractable one-dimensional, nonlinear solution, which models details of 
the coastal flow exactly, also results in no energy absorption a t  the coast. (See 
Carrier & Greenspan 1958.) 

Furthermore, the nonlinear solution away from the coast becomes precisely 
that of the linear theory requiring a bounded solution a t  the undisturbed shore 
line. The derivation of the longwave integral equation (3  2) makes no quantitative 
demands on the value of the wave height or its derivatives at the coast. A bounded 
solution at  the coast is enforced implicitly in the numerical method. One- 
dimensional results were checked, verifying that the analytic solution of the 
differential equation exactly matched that obtained numerically from the 
integral equation. 

3. Formulation of the integral equation 
The technique developed below for solving the long-wave equation auto- 

matically includes the precise radiation condition. Specifically, the differential 
equation is converted into a finite range integral equation. Dependence of 
numerical calculations upon the choice of region and approximate radiation con- 
dition is eliminated. 

The wave height is described by 

7 = eik(z+i)+ w(x, z ) . t  

The first term is the incident monochromatic wave and is an exact solution of (2) 
in a domain excluding the island. The second term represents the wave scattered 
from the island. The depth is measured from the ocean floor, and, in the new co- 
ordinate system, has the value unity at the undisturbed water level, 

h = 1-h’.  

By substituting the new variables and utilizing the outgoing wave Green’s func- 
tion for the Helmholtz equation in an infinite region, i.e. inHf’(kR,), an integral 
equation is derived (see appendix A) : 

where R1 = ((x - x’)~ + ( z  - z ’ ) ~ ) & .  The range of integration includes only the sub- 
merged parts of the island. 

t The factor dik is included in the incident wave representation for algebraic convenience 
in solving for the analytic, one-dimensional solution of the scattered wave w(z). The factor 
remains in the two-dimensional incident wave representation for comparing the numerical 
solutions w(z) and w(z, z) with the analytic w(z). 
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4. Method of solution 
Equation (3) was solved numerically with the aid of an IBM 7094 computer. 

For circular islands, polar co-ordinates and circular grids were employed. The 
unknown was determined at intersections of the grid lines with quadrature 
formulae developed by assuming a biquadratic polynomial form over every mesh 
division of nine points. Quadrature coefficients were calculated by integrating 
over the block of the dual grid centred on the middle of the nine points under 
consideration. In this manner, a set of complex, linear, algebraic equations was 
developed for the values of the unknown at each grid point. 

Wave incident at 0" 

0 8n an %n ?ln Qn t n  &n n 
Coast position (measured in radians around island centre) 

FIGURE 2. Maximum wave amplification at coast (Hawaii). 
- - -, Vastano & Reid (1966, p. 227). 

This set of equations was solved for varying island size, slope, height and 
wavelength. Solutions for elliptical islands were obtained by transforming the 
equation to elliptical co-ordinates and employing an elliptical mesh. The ensuing 
pages illustrate various interesting solution characteristics. Numerical details 
are presented in appendix B. 

Figures 2-4 are plots of the maximum wave amplitude at the coast around a 
half-island. The island-wave system is symmetrical with respect to a line through 
the island centre perpendicular to the incoming wave fronts at infinity. 

Figure 5 depicts the maximum wave amplitude around the coast of an elliptical 
island whose major axis is twice the minor axis. The incoming wave fronts are 
perpendicular to the major axis. For comparison with the circular islands, the 
elliptical island cross-section along the minor axis is identical with that of the 
'small' island, as shown in figure 1. Due to the nature of elliptical co-ordinates, 
the island base is practically circular. The position at  the coast in figure 5 is 

42-2 
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measured in terms of the elliptical angular co-ordinate q5. Figure 6 depicts the 
maximum wave amplitude around the coast of an identical elliptical island except 
that the minor axis is perpendicular to the incoming wavefronts. 

Wave incident at 0" 

Coast position (measured in radians around island centre) 

FIGURE 3. Maximum wave amplification at coast (Oahu). 

Wave incident at 0" 

10 

I 1 I I I I I '0 
i n  t n  %n 3s $n an ib n 

Coast position (measured in radians around island centre) 

FIGURE 4. Maximum wave amplification at  coast. 

Figure 2 contains the best possible match of solutions from the present study 
and from the work of Vastano & Reid. After matching results, the island shapes 
necessary to obtain these curves in each study were compared, As noted in 
figure 2, the island shapes differ, a result of dissimilar coastal boundary con- 
figurations. The present study contains islands of constant slope over the entire 
distance between shore line and island base. The coastal wall used by Vastano & 
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Reid acts to reduce considerably the maximum wave height. Eliminating the 
section of sloping beach nearest the shore line removes a major portion of the 
wave focusing mechanism. 

An appreciation of amplification differences caused by coastal configurations 
may be gained by recognizing that an island shape comparable to that of Vastano 
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Coast position (in elliptical co-ordinate 4) 
FIGURE 5. Maximum wave amplification a t  coast (elliptical island, 

major axis perpendicular to wavefronts). 
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Coast position (in elliptical co-ordinate 4 )  
FIGURE 6. Maximum wave amplification at  coast (elliptical island, 

minor axis perpendicular to wavefronts). 
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& Reid in figure 2 yields much greater amplitudes in the present study. Figure 3 
is such a sample, and, for the shortest wavelength, depicts a maximum amplitude 
almost twice that of Vastano & Reid in figure 2. Furthermore, the number of 
peaks in the coastal amplification curves decreases from four in figure 2 to three 
in figure 3. 

5. One-dimensional wave theory 
(i) Linear long wave theory 

For comparison with the two-dimensional long-wave solutions, the analytic re- 
sults of the one-dimensional linear theory are developed below (see figure 7) .  

With only one horizontal co-ordinate, the island reduces to an infinite ridge 
running perpendicular to the plane of the paper. Regions 1 and 2 have no physical 

Incoming wave 
____p_ -4L 

FIGURE 7. One-dimensional island geometry. 

connection with region 3 and the solution is limited soIely to regions 1 and 2. 
The ridge is subjected to a monochromatic wave propagating to the right from 
x = - co. With the assumption ~ ( x ,  t )  = q(x) e-iwt, the equation becomes 

(h’q2)z+k27 = 0. (4) 

The non-dimensional variables are identical to those used previously, with the 
exception that x is no longer present. The problem as posed is completely anala- 
gous to the two-dimensional formulation. 

The depth in region 1 is h’ = 1 ; and, in region 2, h’ = ax + d. The solutions are 

eik(X+&) + B e-ik(-C+&), (1)  7 = 

(2) 7 = CJ, ~- . ( 2;c$’) 
(J, and J1 are Bessel functions of the first kind.) In  region 2, the selection of the 
bounded solution is consistent with the energy argument presented in § 1 .  G and 
B are determined by matching wave height and slope a t  the boundary of 1 and 2: 

The matching conditions ensure the continuity of wave height and particle 
velocity at  x = - 4. 
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In figure 8, several representative solutions are compared with their two- 
dimensional counterparts. Note that the two-dimensional maximum amplifica- 
tion does not surpass one-dimensional maximum amplification until h < 2L. 

A- 
-3L -L -+L -0.125.C 

Distance in island diameters L 

‘[r ’ 

- L  -+L -0.125L 
0 
-3L 

a 
G d  
3 D  
4 

10 - 
9 -  r\=L 

8 -  
1 -  
6 -  

5 -  
4 -  

3 -  

1 
0 6  I I 4  

-sL -0.125L - L  - 3L 
Distance in island diameters, L Distance in island diameters, L 

FIGURE 8. Comparison of one-dimensional and two-dimensional maximum 
wave amplitudes on line of reflective symmetry (Oahu). 

(ii) Nonlinear wave theory 

Pertinent to the commentary in 4 5 is Carrier’s (1966) expression for the wave 
amplification on a one-dimensional sloping beach. Briefly, Carrier solves an initial 
value problem with deep-water dispersive wave theory in a region of constant 
depth from tsunami source to the base of the sloping beach. The purpose of this 
calculation is the determination of an appropriate tsunami spectrum at the island 
base to serve as a condition to the solution of the nonlinear shallow water equa- 
tions on the sloping beach (Carrier & Greenspan 1958). 

The result of the analysis is a beach amplification factor, the ratio of the 
maximum wave height a t  the coast and the maximum wave height a t  the base 
of the sloping beach. 

The maximum wave heights are evaluated from integrals by the method of 
stationary phase. The point of stationary phase is a particular wave-number in 
a complex wave-number plane, implying that the maximum amplification is due 
to the contributions of a narrow band centred on the point of stationary phase. 

maximum run-up wave-number N x&*, 

4.2p-*x;*, initial motion upward, 

5.6p-*xf*, initial motion downward, 

A = r ~ ~ ~ ~ ~ ~ ~ , , x / r ~ ~ ~ ~ ~ ~ , , , .  

The results are: 

1 (5) A = {  

where xo is the distance between the ocean bottom disturbance and the base of 
the sloping beach measured in units of undisturbed water depth a t  the base of 
the sloping beach, and p is the beach slope. 
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6. Prediction of island run-up 
Displayed in figure 9 are graphs of two-dimensional to one-dimensional linear 

amplification for various wavelengths and islands. Combination of these results 
with the one-dimensional solutions of Carrier allows a beach run-up prediction 
for a tsunami generated by a distant bottom disturbance, propagated over an 
irregular bottom, and amplified by an island slope. 

J q  I I I , 
O O  1 2 3 4 

L/R = 4.00 
2.0 
1.8 

1.4 - 

- 

0.2 - 
0 -  I I I I 

0 1 2 3 4 

Wavelength AIL 

FIGURE 9. Ratio of two-dimensional to 

1 I 5.16 I 10.03 I 1.94 
4.00 2 I 3.77 I 3.60 I 0.96 

0.785 6.59 11.50 
4.65 3.35 3.27 2.63 0.80 

7.85 '2.10 1.10 0.52 

S o . 2 1  , , , , I , , 
' 0 1 2 3 4 5 6 7 8  

Wavelcngth AIL 

one-dimensional maximum wave amplitude on 
beach. L, island diameter at  ocean floor; R ,  island diameter at  beach. 

A run-up estimate based on the full, nonlinear, two-dimensional long wave 
solution would be most desirable. A few observations obtained from analyzing 
the one-dimensional linear and nonlinear solutions make it possible to extra- 
polate known results into a prediction of island run-up. The solution on a sloping 
beach to the one-dimensional, nonlinear equations for small wave height, 
approaches exactly the linear solution over most of the sloping beach. Nonlinear 
effects are relegated to a small region adjacent to the beach, and essentially 
account for the details of a moving coast line, as waves advance and recede. 

The region in which nonlinear terms are important for the one-dimensional 
case, i.e. the distance from shore where such effects are important, is small 
compared to the coastal radius of curvature of an island. Furthermore, in the 
shallow water, refraction implies that loci of constant phase are usually nearly 
parallel to the local coast line. Therefore, even in the two-dimensional case, non- 
linear effects are approximately one-dimensional in nature. Also, the total run- 
up for the nonlinear case is equal to the total run-up predicted by the linear 
one-dimensional solution bounded a t  the quiescent coast line (Carrier & Green- 
span 1958). The above remarks hold for a wave that does not break. 
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The beach amplification factor A (equation ( 5 ) )  was obtained by a stationary 
phase calculation of integrals indicating that the maximum amplification is due 
to a small frequency band in the neighbourhood of the point of stationary phase. 
If a procedure analogous to that of Carrier in determining ( 5 )  could be followed 
for the two-dimensional, nonlinear solution, the expected result would again be 
an integral over frequency that could be evaluated by the method of stationary 
phase. The basic difference in the integrand would be a multiplicative term 
representing the three-dimensional geometrical effects. 

Multiplicative separation of the final value would include two parts: a geo- 
metrical correction factor, and the amplification due to one-dimensional beach 
run-up. Since the maximum amplification is accounted for entirely by linear 
effects, a reasonable approximation to the geometrical correction factor is R,  
the ratio of the maximum run-up of the single (stationary phase) frequency 
response on islands over the maximum run-up of the single (stationary phase) 
frequency response on straight beaches of identical slope; i.e. 

Thus, the total amplification of a tsunami from island base to island coast is 

Atotal = Z . A .  

Eis  given for the investigated islands in figure 9, and A ,  by (5). 

7. Conclusions 
Island run-ups will not always exceed run-ups of straight beaches. The wave- 

length involved must be sufficiently small with respect to the island diameter 
before refraction and diffraction overpower reflexion. In the cases studied, two- 
dimensional encroachment surpassed one-dimensional run-up for wavelengths 
less than twice the island base diameter. 

The graphs of maximum wave amplitude versus angular position on the coast 
illustrate two other important features. The point of maximum inundation may 
occur to the side, as well as directly on the line, of reflective symmetry. For suf- 
ficiently small wavelengths, nodes and antinodes appear in the maximum 
amplitude curve. Consequently, one coastal section might experience relatively 
large amplitudes, while an adjacent area would be relatively unaffected. 

The maximum amplitude around the coast may be associated with a ‘circular 
wavelength’ to identify the numbers of peaks and valleys for each incoming 
wavelength and island shape. Note that a ‘circular wavelength’ measured on an 
island circumference somewhere between the coast nR and the base nL is identical 
to the income wavelength. 

As an example of the amplifications expected on the Hawaiian Islands, 
table 1 predicts the beach run-up for tsunamis initiated in the seismically 
active perimeter of the Pacific Ocean. The distances to various portions of the 
ocean circumference are such that the maximum run-up wavelengths do not 
differ significantly from the average wavelength of 100 nautical miles. The 
maximum beach amplification is determined by (5) and (6). 
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The amplification factors listed below are for round islands. Deviations from 
a circular coast found in nature may cause considerable change in maximum 
run-up. For example, the elliptical island run-ups (figures 5 ,  6) may be compared 
to the small island run-ups (figure 4). If Oahu is considered elliptic, the amplifica- 
tions in the following table must be multiplied by 1.73 for a wavefront parallel to  
the major axis and 1.42 for a wavefront parallel to the minor axis. 

Maximum coastal amplification 

Island Initial motion up Initial motion down 

Hawaii 6.39 8.52 
Oahu (or Kauai) 12-37 16.50 

TABLE 1 

Though the preceding estimates are based on the assumption that the islands 
in the Hawaiian group are isolated, they are, in reality, reasonably adjacent. 
I n  fact, for the most part, the water between the islands is not as deep as the 
ocean floor. A more accurate picture would consider the islands as rising from 
an underwater ridge. The only island similar on all sides to the conical model is 
Kauai, but neighbouring Oahu still is sufficiently close to influence Kauai beach 
encroachment. 

I am grateful to Professor George F. Carrier, whose counsel was of great 
significance in the successful execution of this project, and to Assistant Professor 
Donald G. M. Anderson for his most valuable guidance in the numerical work. 
This work was supported by the Office of Naval Research under Contractls 
Nonr-1866(20) and NO00 14-67-A-0298-002, and by the Division of Engineering 
and Applied Physics, Hnrvard University. 

Appendix A: derivation of the integral equation 
Given (2) in vector notation, 

h’V2y + Wh’ . \ 7 ~  + k2y = 0, 

where 

the following substitutions are made: 

q(z, z )  = eik(z+l)+ w(x, z )  and h‘ = 1 - h, 

V2w + k2w = - 4nP(x, x )  = hV2w + Vh . Vw + ik(h eik(z+l))z. (A2) 

Equation (A 2) is in the form of a non-homogeneous Helmholtz equation whose 
solution may be written in terms of an integral derived with the aid of Green’s 
theorem and the appropriate Green’s function. 

The Green’s function for the Helmholtz equation is derived formally from the 
equation, V2G(x, 2, x’, 2‘) + k2G(x, Z ,  x’, 2’)  = - 4 n & ( ~  - x’) &(z - z ‘ ) ,  643) 
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where 6(x) is the Dirac delta function defined in the usual manner. The solution 
in an infinite region for outgoing waves is 

G(x,z,x’,z’) = inHf’(kR1) where R1 = ( ( x - x ’ ) 2 + ( ~ - - z ‘ ) ~ ) * ,  

and HL1) is the zero-order Hankel function. 
Green’s theorem states: 

( U V V -  V V U ) . $ d l =  ( U V 2 V -  VV2U)dA .  (A 4) fsa 
The line integral path is the entire boundary of the surface integral domain and 
traversed such that the area under consideration lies to the left. 6i is the unit 
outward normal vector to the pathlength increment dl. w and G are substituted 
for U and V .  A complete discussion of Green’s functions and their applications 
is found in Morse & Feshbach (1953, pp. 791-895). 

The case investigated includes a domain with water depth constant, save for 
an island centred on the origin. The area of the surface integral is the infinite, 
doubly connected region corresponding physically to the area occupied by the 
undisturbed water surface. The line integral in (A4) consists of two pieces: the 
first, an integral around a closed contour at infinity; the second, an integral 
evaluated at  the island coast. 

The line integral evaluated around a closed contour approaching infinity, 
vanishes as a result of the limiting forms of w and G far from the island. w, 
in a constant depth domain, may be expressed in terms of a Hankel function 
expansion. The asymptotic forms of Hankel functions verify that 

(wVG - GVw) N O( I/+), 

as r -+ co, where r is the distance from the island centre. Since the path length 
increases as r,  the integral vanishes as l / r ,  r -+ 00. The normal procedure in 
problems of this nature is to require specific conditions on both w and G that 
will cause the line integral around the coast to vanish. 

The only condition that w be bounded, makes it impossible to force the 
integral around the coast (I?,) to be zero. Alternatively, this integral is included as 
a term in the equation. Substituting for V2w and V2G by employing equations 
(A2) and (A 3) results in the equation, 

w = -- 1 j/G(hV’zw + V’h. V‘w) dx‘ dz’ - //G(h eik(z’+i))z, dx’ dz‘ 
47r 47r 

(wV’G-GV‘w).Gdl‘. (A5) -ii kl 
The contribution of the area integrals in (A5) is everywhere zero except in the 
domain of the island. In  its present form, (A 5) would require numerical integra- 
tion of a numerically differentiated unknown, a process demanding a large 
number of grid points. Integration by parts removes the derivatives of the un- 
known from the integrals. 
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In vector form the first integral in (A 5) is 

/ IA  GV’ . (hV’w) dA’ = V’  . (GhV’w) dA’ - hV’w . V’G dA’. (A 6) 

Applying a version of Green’s theorem 

( / I A V . B d A  = frB.r?dZ) 

to the first integral on the right-hand side of (A 6), 

/ J A  GV‘ . (hV’w) dA’ = $ GhV’w .r2dZ’ - / IA  hV’w . V’G dA’. (A 7) 

The line integral consists of two parts, an integral around the island base circum- 
ference, and an integral around the island coast. The former vanishes (h  = 0 at 
the island base), and the latter does not (h = 1 at the coast). Another integration 
by parts is performed on the second integral. 

/!AhVfw.V’GdA’ = V’.(whV’G)dA’-  wV’.(hV‘G)dA‘. (A8) 

The first integral on the right-hand side is converted to line integrals as in (A 6) 
and (A 7), leaving the relation, 

/ /AGV’ . (hV’w)dAf  = wV‘.(hV’G)dA’+ h(GV’w-wV’G)..Tidl’. (A9)  

The substitution of (A 9) into (A 5) demonstrates that the line integrals in each 

r 

!I* ss, 

ss, f r l  

equation cancel. The final form of (A5) in polar co-ordinates (r,  0) is 

I wh‘ = --!!( i -keH~1)(kRl)h+kEl‘1)(kR1)h,.(rcos(O-19’)-r’)  wr‘dr‘dI9’ 
4 Rl 

+ 4 JIEl;’) (kR,) eik@’ e+& (cos B’h,, + ikh) r’ dr‘ d8’, (A 10) 

where R1 = ( r2 + r‘2 - 2rr’ cos ( I 9  - el))*. 
These results verify the validity of (A 10) (also (3)) in the infinite doubly connected 
domain in the neighbourhood of an island. Furthermore, (A10) is valid in the 
singly connected domain in the neighbourhood of a seamount or submerged 
island (Lautenbacher 1967). 

Two sets of elliptical co-ordinates were employed to handle elliptical islands 
with both major and minor axes perpendicular to the incoming wavefronts: 

X’ = C, Gosh 6’ cos $’, x = C, cash E cos $, 
{ z‘ = C, sinh (‘sin 4’) { z = C, sinh (sin $, 

(major axis perpendicular to incoming wavefronts) ; 

x f  = C, sinh (’ cos $’, x = C, sinh 5 cos $, 

x = C, cosh sin 4, 1 z‘ = C, cosh 5‘ sin #‘, 
(minor axis perpendicular to incoming wavefronts). 
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Appendix B : numerical analysis 
The working equation is a complex, singular, two-dimensional integral equa- 

tion. The describing adjectives form an appropriate summary of the obstacles 
present. Complex variables were handled directly by the complex arithmetic 
module available on the IBM 7094 computer. The singularity of the equation 

FIGURE 10. Circular mesh section. -, mesh; - - - -, dual mesh. 

required special treatment in the region of the singular point. With two dimen- 
sions involved, the numerical method had to be most efficient in the number of 
grid points necessary for an accurate solution. To determine the method of 
solution, the one-dimensional differential equation was solved analytically and 
compared with various numerical solutions of the one-dimensional integral 
formulation. 

The successful approach included polynomial approximation of the unknown 
in the entire range of integration. The equation was written for each grid point, 
the integration performed, and the resulting set of linear, complex, algebraic 
equations solved by Gaussian elimination. 

Specifically, the unknown W(T, 0 )  was approximated with bi-quadratics in r 
and 0 using the Lagrangian interpolation polynomials : 
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The range of integration was covered by assuming w(r, 6) to be a function com- 
posed of overlapping bi-quadratic segments connecting every three-point-by- 
three-point subdivision of the grid. 

As an example (see figure lo), the crosshatched area was integrated assuming 
a biquadratic form for the unknown centred on point 22.  The same technique was 
applied to every square of the dual mesh within the range of integration. Every 
term in the unknown equation matrix has contributions from integrations over 
nine blocks, each with its separate polynomial approximation. Every quadrature 
coefficient represents an average value of nine overlapping approximations. 

FIGURE 11. Singular integration scheme. 

Hankel functions of order zero and one necessitated the numerical calculation 
of the quadrature coefficients. After testing various integration schemes, a 
product of two, three-point Gaussian quadrature formulae in r and 0 was 
chosen, The integrals in schematic form are: 

where li are the Lagrangian interpolation polynomials defined above. 
Sufficiently distant from the singularity a t  r = r’, and 6 = O‘, the quadrature 

scheme was accurate to six significant digits (Lautenbacher 1967, p. A22). Quad- 
rature formulae compounded from the nine-point Gaussian quadrature were 
applied in dual mesh squares near to the singularity. Integral conversion was 
tested by gradually increasing the number of sample points and comparing the 
results. If n is the number of mesh spaces on each side of a dual mesh square, the 
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number of sample points is 9n2. So long as the singularity was not chosen as a 
sample point, integration in the singular regions presented no problem. For all 
parameter variations, the n = 4 results were correct to three significant figures 
(Lautenbacher 1967, p. A 24). 

-2.0 L I I I I 
-0.5L -0.125L 0 0.125L 0.5L 

Distance in island diameters, L 

FIGURE 12. Convergence of two-dimensional solution on line of reflective symmetry 
(h = 2L). 0, 42 points; 0 + A, 84 points; 0 + 0, 130 points. 

n. . 1.n I- 

-\ 
v o v  

-20 1 I I I I I 1 

0 3 n  * n  3 n  %T n 
Island beach circumference in radians 

FIGVRE 13. Convergence of two-dimensional solution around island at beach (h = 2L). 
0, 42 points; A, 84 points; 0 + n, 130 points. 

As a check, integrals with simple 1nR and 1/R singularities were computed 
both analytically and numerically. Results compared within 0.5 % when a suf- 
ficient number of sample points (n = 4) were used. The diagram in figure 11 in- 
dicates the number of sample points (9nz) employed in the integration scheme 
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for all possible cases. The identical sampling procedure was employed for the 
nonhomogeneous term, a singular integral behaving like In R as R + 0. 

By investigating islands with reflective symmetry, the number of unknowns 
was halved. Forty-two, eighty-four, and 130 unknowns on a half island were 
used. The running times on an IBM 7094 computer were 7, 20 and 60min re- 
spectively. Solution convergence €or an increasing number of grid points is 
shown in figures 12-13. Results for elliptical islands were computed by employing 
elliptical co-ordinates for the grids and the equations. The method was identical 
to the procedures outlined above. 
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